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Ball milling and conventional magnetic stirring can be used to support different laboratory
techniques with a highly efficient mixing of reagents under solvent-free conditions. By using
multilinear regression and linear discriminant analysis, topological-mathematical models have
been built to predict the yield and the reaction time for organocatalytic reactions, Suzuki reactions
and reactions of synthesis of heterocyclic compounds. The results from the in silico predictions
confirm the usefulness of the approach followed.

1. Introduction

Development of solvent-free reactions can lead to new envi-
ronmentally benign procedures that save resources and energy.
These kinds of reactions promise to be an essential facet of green
chemistry and are of high interest from both financial and en-
vironmental aspects.1,2 These approaches can help to reduce the
amounts of undesired hazardous chemicals (including solvents)
used, increase the selectivity towards the given product(s) and
also enhance the rate of many organic reactions.

In particular, ball-milling, microwave heating and ultrasonic
irradiation are useful tools for promoting organocatalytic
reactions under solvent-free conditions.3 In many cases its
application allows for a reduction of the amounts of reagents
(in particular solvents), shorter reaction times and increased
product yield, thereby resulting in a more efficient use of raw
materials and energy.3 All three techniques affect chemical
processes requiring enhanced heat transfer and mass transport.
Consequently, heterogeneous reactions can particularly benefit
from the application of such techniques.

Several mathematical approaches have been proposed to
facilitate the prediction of molecular properties. Equations
linking quantitative structure–property (QSPR) relationships
are particularly relevant and can be applied to large libraries
of compounds for virtual computational screening.4,5 However,
these models require good structural descriptors that reliably
represent the molecular features responsible for the property
under study.

Molecular Topology (MT) is a way of describing molecular
structures. It follows a two-dimensional approach, taking into
account the internal atomic arrangement. The structure of
each molecule is represented by specific subsets of topological
indices (TIs).6 These indices, when well chosen, provide a unique
way of characterizing a molecular structure.7 TIs are able to
characterize the most important features of molecular structure:
molecular size, binding and branching. The computation of TIs
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is very swift and they also have the advantage of behaving as true
structural invariants. This means that TIs are independent of the
spatial position of the atoms in a particular moment, although
extensions of the TIs giving account of three-dimensional
structure have been also devised.8–10

MT has been demonstrated to be an excellent tool in the
prediction of physical,11 chemical and biological properties of
structurally heterogeneous groups of compounds.12 Today, it is
known that, for most purposes, topostructural and topochem-
ical information explains the most of the predicted properties,
and that the inclusion of three-dimensional features results in
slightly improved predictive models.13

This paper is one of the first attempts to use MT in the practi-
cal work of sustainable chemistry. Specifically, it is focused on de-
veloping and assessing QSPR models in order to predict the yield
and reaction times of organic molecules when reacting under
solvent-free and catalyst-free conditions.14,15 Furthermore, some
of these parameters are predicted for reactions under different
experimental conditions such as ball-milling or stirring.3

2. Studied reactions

2.1 Organocatalytic reactions

In this work we have studied reactions using ball-milling
(method A) and conventional magnetic stirring (method B). Ball
milling and magnetic stirring are useful tools that allow highly
efficient mixing of reagents under solvent-free conditions. In
chemical synthesis, ball-milling or magnetic stirring modify the
reaction conditions and enhance the reactivity of the reagents,
with an enormous increase of the reagent surfaces, which lead to
close contact between the starting materials on molecular scale.3

Table 1 shows the yield obtained by Bolm and co-workers16 for
methods A and B and an aldol reactions under solvent-free
conditions.

2.2 Synthesis of heterocyclic compounds

Mashkouri et al.14 have recently presented a route to the synthesis
of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones with excellent
yields (>99%) by simply ball-milling a stoichiometric mixture
of an aldehyde, malononitrile, and barbituric acid without any
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Table 1 Organocatalytic reactions: Effects of ball-milling, microwave and ultrasound irradiationa

Method A Method B

Comp. R1 R2 X YieldExp.( %) YieldCalc. (%) YieldExp. (%) YieldCalc. (%) MATS4m

1 H 2-MeO C 65 59 64 62 0.179
2 H 4-Cl C 87 85 85 86 -0.04
3 H 2-NO2 C 97 89 89 93 -0.221
4 H 3-NO2 C 94 95 89 89 -0.204
5 H 4-NO2 C 99 100 95 85 -0.196
6 t-Bu 4-Cl C 75 75 85 83 -0.01
7 t-Bu 2-NO2 C 66 72 76 79 -0.088
8 t-Bu 3-NO2 C 80 78 82 75 -0.077
9 t-Bu 4-NO2 C 85 82 58 71 -0.066
10 — 4-Cl S 72 83 77 83 -0.01
11 — 2-NO2 S 59 66 73 62 0.06
12 — 3-NO2 S 75 71 59 57 0.084
13 — 4-NO2 S 79 77 47 54 0.087

a Selected regression equations: Yield A (%) = 224.4 - 82.03MATS4m - 75.94J; N = 13, R = 0.9043, R2 = 0.8178, Q2 = 0.6784, SEE = 5.82,
F = 22.94, p = 0.0002, where MATS4m = (Moran autocorrelation at lag = 4) / atomic mass weighting, and J = Balaban distance index. Yield B
(%) = 81.6 - 109.0MATS4m - 1.26TN–O; N = 13, R = 0.8805R2 = 0.7753, Q2 = 0.6541, SEE = 7.43, F = 17.59, p = 0.0005, MATS4m = (Moran
autocorrelation at lag = 4) / atomic mass weighting, and TN–O = sum of topological N–O distances.

Table 2 Synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones under solvent-free and catalyst-free conditionsa

Comp. R TimeExp. (min) YieldExp. (%) TimeCalc. (min) Residual (min) TimeCV-calc
b (min) ResidualCV (min) EEig05R

1 C6H5 70 >99 83 -13 93 -23 2.90
2 2-ClC6H4 90 >99 79 11 73 17 2.91
3 4-ClC6H4 55 >99 52 3 51 4 2.97
4 2-NO2C6H4 60 >99 55 5 54 6 2.96
5 3-NO2C6H4 15 >99 23 -8 27 -12 3.04
6 4-NO2C6H4 25 >99 19 6 15 10 3.05
7 4-CH3OC6H4 30 >99 34 -4 36 -6 3.01

a Reaction time (min) = 1357.2 - 439.3EEig05R; N = 7, R = 0.9459, R2 = 0.8948, Q2 = 0.7477, SEE = 9.59, F = 42.51, p <0.0013, and EEig05R = Eigenvalue
05 from edge adjacent matrix weighted by resonance integrals. b CV = Cross-validation.

catalyst or solvent. Table 2 shows the reaction scheme and the
reaction times obtained in each synthesis.

2.3 Suzuki reaction

Nielsen and coworkers15 have investigated the coupling Suzuki
reaction of diverse haloarenes with phenylboronic acid under
ball-milling and solvent-free conditions. Table 4 shows the reac-
tion scheme and the yields obtained in each coupling reaction.

3. Molecular descriptors

A set of well-known topological descriptors was used in this
work: subgraph Randić–Kier–Hall-like indices up to the fourth
order (mct, mct

v),17 topological charge indices; TCI, up to the

fifth order, (Jm, Gm, Jm
v, Gm

v),18 quotients and differences
between valence and non-valence connectivity (mCt = mct/mct

v

and mDt = mct - mct
v), Balaban distance index (J),19 Moran

autocorrelations.20 All descriptors used in this work were ob-
tained with the aid of the in-house Desmol11 program (available
by e-mail request) and the software DRAGON.21

4. QSAR algorithms

4.1 Multilinear regression analysis

The regression equations were obtained by correlating the
experimental yields or times values with the aforementioned TIs,
by multilinear regression analysis, MLRA, through the BMDP
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Table 3 Classification functions and classification matrix obtained by
linear discriminant analysis with yield (%) and the test group for the
Suzuki reaction: Aryl halogenides with phenylboronic acid

Classification functionsab

Variable DFH DFM DFL

X3P 214.8 181.0 161.1
G2 -38.7 -31.5 -27.8
J3 1306.8 1091.1 953.4
D1 -164.2 -138.2 -121.9
PR1 -49.9 -41.6 -37.0
Constant -198.7 -145.6 -115.6

Classification matrix

Number of
cases classified
in group

Group Correct (%) H M L

H 87.5 7 1 0
M 75 1 6 1
L 92.3 0 1 12
Total 86.2 8 8 13

a N = 29, l (Wilks’ lambda) = 0.163, F-stat = 6.50. b DF = Discriminant
Function.

software.22 The Furnival–Wilson algorithm23 was followed to
find subsets of descriptors, and the minimum value of the
Mallows’ Cp parameter was the variable selecting criterion.24

The program searched subsets with 1, 2, 3... independent
variables and selected the equation exhibiting the smallest
Mallows’ Cp parameter.

Just to validate the selected prediction functions, a cross-
validation was carried out. For the cross-validation test, the
leave-one-out algorithm was used, in which one case is elimi-
nated from the data set and then the regression analysis with
the N - 1 remaining cases and the original descriptors (the
ones selected in the first regression) is performed again. The
corresponding property value for the case taken out is then
predicted. The procedure is repeated as many times as there are
cases in the data.25 The value of prediction coefficient, Q2, will
indicate the quality of the prediction function selected.

4.2 Linear discriminant analysis

The objective of the linear discriminant analysis (LDA), which is
considered as a heuristic algorithm able to distinguish between
two or more categories or objects, is to find a linear function
to correctly classify each object.26 In this work, the LDA for
three groups was performed with the yield percent. Thresholds
for each category were: High (yields >40%), Medium (yields
10–40%) and Low (yields <10%).

The discriminant capability was tested by the percentage of
correct classifications into each group. LDA was carried out
using the BMDP 7M package.22 The selection of the descriptors
was based on the F-Snedecor parameter, and the classification
criteria was the shortest Mahalanobis distance (distance of each
case to the mean of all cases used in the regression equation). 7M
chooses the variables used in computing the linear classification
functions in a stepwise manner. At each step the variable that

adds the most to the separation of the groups is added to (or the
variable that adds the least is removed from) the discriminant
function. The quality of the discriminant function is evaluated
by the Wilks’ lambda parameter, l, which is a multivariate
analysis of the variance statistic that tests the equality of group
means for the variable(s) in the discriminant function.

5. Results and discussion

The first goal of this work was to find the best QSAR models for
predicting the yields of processes under ball-milling (method A)
or stirring (method B) under organocatalytic reactions. The
best linear regression equations obtained, including its statistical
parameters, were:

Yield A (%) = 224.4 - 82.0MATS4m - 75.9J (1)

with

N = 13, r = 0.9043, r2 = 0.8178, Q2 = 0.6784, SEE = 5.82,
F = 22.9 p = 0.0002

and

Yield B (%) = 81.6 - 109.0MATS4m - 1.26TN–O (2)

with

N = 13, r = 0.8805, r2 = 0.7753, Q2 = 0.6541, SEE = 7.43,
F = 17.6, p = 0.0005.

The values of r2, the prediction coefficients in the cross-
validation type leave-one-out algorithm, Q2, as well as the low
SEE (less than 8% of the average values of the property) account
for the quality of the models selected.

Table 1 and Fig. 1 show the yields predicted for each reaction
studied.

In both equations the Moran index, MATS4m, appears. This
descriptor is defined as:

MATS p l

p p p p

p p
k

ij ki k kj k

j

ki k
i

=

−( ) −( )

−( )

∑
∑

d
(3)

where pki and pkj are the values of property k of atoms i and
j, respectively; pk is the average value of property k; l is the
number of non-zero elements in the sum and d(l,dij) is a Dirac
delta function defined as:

d(l,dij) = 1 if dij = l or d(l,dij) = 0 if dij π l

where dij is the topological distance or spatial lag between atoms
i and j.

Spatial autocorrelation is a measure of the degree of inter-
dependence between properties, and the nature and strength
of that interdependence. It is classified either as positive or
negative, depending if all similar values appear gathered or
not. In chemical compounds, Moran’s spatial autocorrelation
evaluates whether the value of an atomic property at a given
atom in the molecule is or is not independent of the values of such
property at the neighbouring atoms. If that dependence occurs,
then the property is considered to show spatial autocorrelation.

Moreau and Broto27 were the first to apply the autocor-
relation indices to the topology of molecular structures. The
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Table 4 Results of classification obtained by linear discriminant analysis with yield (%) and the training group in the Suzuki reaction: Aryl
halogenides with phenylboronic acid

Probability

Comp. Substrate Yield (%) H M L Class

H training group (yields >40%)
1 2-Bromonaphthalene 96 1.000 0.000 0.000 H
2 3-Bromoanisole 93 0.997 0.003 0.000 H
3 5-Bromo-1,3-benzodioxole 91 0.695 0.304 0.002 H
4 3-Bromoaniline 89 0.134 0.816 0.050 M
5 3-Chlorobromo-benzene 84 0.998 0.002 0.000 H
6 4-Bromo-benzotrifluoride 82 0.999 0.001 0.000 H
7 4-Bromo-N,N-dimethylaniline 50 0.998 0.002 0.000 H
8 3-Bromoquinoline 46 0.998 0.002 0.000 H

M training group (yields <40% and >10%)
9 4-Bromoanisole 37 0.749 0.248 0.003 H
10 2-Bromo-6-nitrotoluene 27 0.001 0.927 0.071 M
11 3-Bromobenzaldehyde 24 0.034 0.842 0.123 M
12 4-Bromoisoquinoline 20 0.041 0.901 0.058 M
13 3-Bromobenzonitrile 12 0.048 0.905 0.047 M
14 4¢-Bromoacetophenone 11 0.000 0.119 0.881 L
15 3¢-Bromoacetophenone 10 0.001 0.696 0.304 M
16 3-Bromo-4-nitroanisole 10 0.001 0.769 0.231 M

L training group (yields <10%)
17 2-Bromobenzonitrile 5 0.000 0.036 0.964 L
18 2-Bromobenzaldehyde 4 0.000 0.052 0.948 L
19 2-Bromo-3-nitrotoluene 4 0.000 0.785 0.215 M
20 4-Bromobenzaldehyde 2 0.000 0.257 0.743 L
21 5-Bromopyrimidine 2 0.000 0.004 0.996 L
22 5-Bromoindole 1 0.000 0.309 0.691 L
23 3-Bromopyridine 1 0.000 0.043 0.957 L
24 4-Bromobenzonitrile 0 0.000 0.486 0.514 L
25 2-Bromonitrobenzene 0 0.000 0.090 0.910 L
26 4-Iodonitrobenzene 0 0.000 0.290 0.710 L
27 4¢-Bromoacetanilide 0 0.000 0.329 0.671 L
28 4-Bromophenol 0 0.000 0.216 0.784 L
29 4-Bromopyridine 0 0.000 0.043 0.957 L

autocorrelation vectors represent the level or degree of similarity
between/among molecules. In our case, the most representative
index in reaction yields prediction was the MATS4m, i.e. the
Moran autocorrelation index at lag (topological distance) = 4.

A pretty reasonable interpretation can be made on the basis
of elemental organic chemistry. Thus, the presence of a donor
group (such as MeO) on the 2-position of the aldehyde’s benzene
ring clearly stabilizes it, so hindering the tautomeric transfer of
H in the product. In contrast, the presence on the benzene ring of
electron-accepting or -withdrawing groups, such as NO2 or Cl,
promote the reaction. Furthermore, the potency and position
of the electron-withdrawing effect is also critical. Thus, the
nitro group is a better reaction promoter than Cl, which is not
surprising considering that NO2 is an electron acceptor by both
inductive and resonance effects, whereas Cl is only inductive.
Regarding the position, it is very clear that the further the
electron acceptor from the aldehyde (carbonyl in the product)
the better. Compare for example the larger values for compounds
with Cl or NO2 on the 4-position with the smaller values when
they are on the 2- and 3-positions. Moreover, as was to be
expected, these features are common to both A and B methods.

Interestingly, the MATS4m index seems to encode informa-
tion related to the chemical behaviour. Thus, compound 1, which
contains a methoxy group, shows the largest positive value of
MATS4m (0.179), whereas compound 5 (with NO2 at the 4-
position) shows one of the highest negative values (-0.196). The
MAT indices range between -1, indicating perfect dispersion in
the spatial similarity of the atoms, up to +1, indicating perfect
correlation, though in general, the MAT values are close to 0
(random correlation). Also, as deduced from eqn (1) and eqn (2),
the larger the MAT values the lower the yield. The substitution
of carbon with sulfur on position X clearly balance the atomic
weights in the molecule, thereby making the MAT values slightly
positive (compounds 11, 12 and 13).

Regarding the reaction time for the pyrano-pyrimidonedione
synthesis (Table 2), the best linear regression equation obtained
was:

Reaction time (min) = 1357.2 - 439.3EEig05R (4)

with

N = 7, r = 0.9459, r2 = 0.8948, Q2 = 0.7477, SEE = 9.59,
F = 42.51, p <0.0013

This journal is © The Royal Society of Chemistry 2010 Green Chem., 2010, 12, 1056–1061 | 1059
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Fig. 1 Prediction of yield (%) for organocatalytic reactions: effects of
(A) ball-milling and (B) stirring.

Table 2 and Fig. 2 show the results of the prediction of
reaction times for each reaction studied. The concordance
between Timeexp.. and Timecalc. indicate the good quality of the
selected model.

In this case is noteworthy that, in contrast to the reaction
yield, the electronic properties of the moieties involved are not
relevant. So, compound 6, containing the nitro motif at the 4-
position of the benzene substituent, and compound 7, which
has a methoxy group, exhibit very similar reaction times. What
does play a key role is the position of the substituents on the
benzene ring (compare compounds 2 and 3, as well as 4 and
5). In the second case, the reaction time falls from 60 to 15 min
just by moving the chlorine or NO2 from the 2-position to the
3-position.

These features are consistent with the regression equation
obtained, eqn (4), which contains the index EEig05R, which is
a measure of the eigenvalues of the edge adjacency matrix
weighted by the resonant integrals. Given the conjugated nature
of the analysed compounds, it makes sense that an index
related to the p electron energies (delocalized molecular p-orbital
energies) should play a dramatic role. In fact, compounds with

Fig. 2 Prediction of reaction times in the synthesis of pyrano[2,3-
d]pyrimidine-2,4(1H,3H)-diones under solvent-free and catalyst-free
conditions. (a) Graphical representation of experimental time against
calculated time from eqn (3). (b) Graphical representation of the
residuals obtained in the training series against that obtained in the
cross-validation.

EEig05R values above 3.00 show reaction times below 30 min.
Moreover, since it is the edge adjacency matrix – and not the
vertex adjacency matrix – that is involved, the conjugation effects
(interactions between a bond and its adjacent bond) are better
depicted.

Finally, LDA performed very well in the Suzuki reaction. In
order to get the discriminant function, we applied LDA to a
training set comprised of 29 cases included in the three subsets
mentioned above. As shown in Table 3, a 5-variable equation led
to an average correct classification of 86.2% in the prediction of
reaction yield.

Table 4 shows the classification obtained for each case in order
to get the probability parameter, and Fig. 3 illustrates the spatial
region of stability for each group using the canonical variables
obtained in the LDA.

Typical topostructural indices, such as 3cp and PR1 (pairs of
ramification at lag one), as well as topological charge indices,
such as G2, J3 and 1D, play an important role. This can be
interpreted in the sense that both structural and electronic
properties determine the reaction yield.

Though the interpretation of these results is difficult, some
thought reveals that the presence of electron acceptor-donor
couples results in larger values of yield. Compare for example

1060 | Green Chem., 2010, 12, 1056–1061 This journal is © The Royal Society of Chemistry 2010
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Fig. 3 Plot of canonical variable 2 versus canonical variable 1 for LDA
with three groups (� = H group (yields >40%); � = L group (yields
<10%); ¥ = M group (yields <40% and >10%).

the high yield for 3-bromoanisole and 3-bromoaniline with the –
much lower – value for 4-bromo-N,N-dimethylaniline, in which
the tertiary amine hinders the basicity of the amine. In contrast,
the presence of two acceptors virtually stops the progress of the
reaction (see compounds 17 to 29).

6. Conclusions

The results outlined here demonstrate that molecular topology
can be successfully employed to predict reaction parameters
playing key role in green chemistry. The topological indices
involved in the regression equations, particularly the Moran
autocorrelation indices, provide a good framework to interpret
the results in terms of structure–reactivity relationships. As far
as we are aware, the results described herein represent one of the
first attempts to apply molecular topology to the framework of
green chemistry. The outcome of this work demonstrates that
in silico approaches based on molecular topology can be a very
useful tool for experimentalists. Thereby, we should be able to
predict greener reactions prior to experimental tests, so saving
time and expense.
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25 E. Besalú, J. Math. Chem., 2001, 29, 191–204.
26 S. Wold and L. Eriksson, Statistical validation of QSAR results in

Chemometric methods in molecular design ed. H. Van de Waterbeemd,
VCH, New York, 1995.

27 G. Moreau and P. Broto, Nouv. J. Chim., 1980, 4, 359–360.

This journal is © The Royal Society of Chemistry 2010 Green Chem., 2010, 12, 1056–1061 | 1061

D
ow

nl
oa

de
d 

by
 C

ity
 C

ol
le

ge
 o

f 
N

ew
 Y

or
k 

on
 2

4 
N

ov
em

be
r 

20
10

Pu
bl

is
he

d 
on

 0
8 

Ju
ne

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/B

92
60

47
A

View Online

http://dx.doi.org/10.1039/B926047A

